FLOWT Pipeline — Floating Litter Observation & Waste
Tracking

Fereshteh Nayyeri

Abstract

Plastic and floating debris pose significant risks to aquatic ecosystems, marine life, and human health. Recent
advances in Al and computer vision enable efficient detection, monitoring, and quantification of floating waste,
generating reliable data to support clean-up efforts, policymaking, and long-term prevention. This work presents
FLOWT, a modular computer vision pipeline for Floating Litter Observation & Waste Tracking. FLOWT supports
video ingestion, object detection, visualization, and tracking of individual debris items across frames. A human-in-
the-loop review stage ensures validated, high-quality data by allowing users to correct misclassifications before
downstream use. FLOWT operates via two independent workflows: the Waste Tracking workflow, which focuses
on operational monitoring and produces annotated outputs and analytical summaries without requiring machine
learning expertise; and the Model Improvement workflow, which leverages validated annotations to continuously
retrain and fine-tune detection models while maintaining ongoing waste-tracking operations. Additionally, FLOWT
integrates Al Insight, using Large Language Models (LLMs) to transform detection outputs into actionable
analyses. Al Insight interprets spatial and temporal patterns, flags anomalies, highlights recurring errors, and guides
both operational decisions and model refinement. By combining these workflows and Al-driven insights, FLOWT
accelerates review cycles, enhances transparency, and enables smarter monitoring and continuous improvement of
floating debris detection.

1. Pipeline Objectives

FLOWT is built around two independent workflows that support both operational monitoring and continuous model
development. These two independent workflows, illustrated in Figure 1, include waste tracking and model fine-
tuning. The Waste Tracking workflow is designed for environmental practitioners and researchers who need to
detect debris, review and correct outputs, generate annotated videos, and produce analytical summaries—without
requiring any machine learning expertise. The Model Improvement workflow leverages the validated annotations
produced during review to retrain or fine-tune detection models. Because the workflows operate independently,
waste-tracking activities continue uninterrupted even as models are improved in parallel.

4 s h
Model Data Ingestion Waste
Improvement Tracking
Workflow Workflow

l—

—>

Select Model Em
B -
m Tracking Video Generation
S J
o J
v

Best Ye
No Results? es

Figurel. FLOWT Pipeline including two independent workflows

FLOWT is built for scalability, maintainability, and, above all, accessibility to non-ML technical users. With a
consistent and intuitive UI/UX, automated configuration handling, and guided workflows, it enables users with
limited technical backgrounds to inspect detections, validate outputs, fine-tune models, and conduct analyses with
confidence. By combining automated Al capabilities with essential human oversight, FLOWT offers a practical
and reliable solution for environmental monitoring and marine debris management.

Released under Creative Commons Attribution 4.0 (CC BY 4.0)

2.1 Waste Tracking Workflow

The waste tracking workflow manages the full process of floating litter observation, from data ingestion and
automated scanning to human-in-the-loop review, object tracking, analysis, and annotated video generation. During
tracking, FLOWT adapts to different video types: in standard videos with smooth frame-to-frame motion, IoU-
based tracking is used to reliably associate objects across frames; however, in timelapse footage, where large
temporal gaps cause objects to shift significantly between frames and result in zero-intersection loU values, the
system switches to template matching, enabling robust re-identification of debris items despite abrupt positional
changes. This workflow empowers users to manually correct detection results, track unique objects, and generate
detailed analytical outputs.

e Goal: Monitor and analyse floating litter.
e Process:
Data Ingestion — Scanning — Review — Tracking — Analysis — Video Generation
e Key Features:
o Manual review and correction of detection results.
o Tracking of unique litter objects using loU and template matching.
o In-depth analysis and annotated video generation.

2.2 Model Improvement Workflow

Complementing this, the model improvement workflow focuses on enhancing detection performance by
transforming validated annotations into high-quality, curated training datasets. As the fine-tuning dataset grows
over time - sourced from individual frames extracted during user-reviewed video processing - FLOWT ensures that
no redundant images are added when videos are reprocessed or revalidated. To maintain a clean and efficient
training set, the system uses a hash-based deduplication mechanism, comparing the hash signatures of new
frames against previously stored samples. This prevents duplicate images from entering the dataset and preserves
the integrity and diversity of the curated training data used for model refinement. This workflow also supports
version-controlled fine-tuning and ensures that refined models can be seamlessly reintegrated into the inference
pipeline without interrupting ongoing waste-tracking tasks. Together, these workflows deliver a flexible, reliable,
and user-friendly system for environmental monitoring and model evolution.

¢ Goal: Iteratively improve detection model performance.
e Process:
Data Ingestion — Scanning — Review — Model Refinement
e Key Features:
o Creation of high-quality, curated training datasets.
o Version-controlled fine-tuning of models.
o Seamless integration of improved models into the inference workflow.

A dedicated analysis module provides two complementary capabilities: detection-based analytics, offering
performance summaries through metrics such as accuracy, precision, recall, class distributions, confidence scores,
and tag frequency patterns to identify potential bias or drift. AI-driven insights, powered by OpenAl Large
Language Models (LLMs), which interpret detection trends, highlight anomalies, and produce human-readable
recommendations for improving data quality and operational workflows. These generative Al insights act as an
analytical assistant, helping users recognise non-obvious patterns and make informed decisions.

3. Pipeline Architecture Overview

FLOWT’s pipeline is built on a modular technical architecture designed to deliver a seamless and intuitive user
experience across all workflow stages. The Navigation System ensures smooth movement between components by
maintaining state persistence—for example, preserving selected videos, chosen models, and user inputs across
pages—while a unified video display standardises all uploaded formats into .mp4. Complementing this, FLOWT’s
centralised configuration management uses a YAML-based system to automatically store and restore user
preferences, with clearly structured sections dedicated to video generation, tracking, and fine-tuning. Building on
these foundations, the pipeline stages work together to handle ingestion, automated scanning, human-in-the-loop

Released under Creative Commons Attribution 4.0 (CC BY 4.0)

review, tracking, analysis, model improvement, and system orchestration. The following table maps each pipeline
stage to its associated modules, key functions, and operational notes.

Navigation System Features:

e State Persistence: Maintains video and model selections across pages.
e Consistent Ul: Uniform .mp4 video display, regardless of original format.
e Intuitive Navigation: Previous/Next buttons across all pages.

Configuration Management Features:

¢ Centralised YAML-based configuration (config/config.yaml).
e User preferences are automatically saved and restored.
e Modular sections for video generation, tracking, and fine-tuning.

To provide a clear understanding of the pipeline’s structure and functionality, we organise the workflow into distinct
stages, each responsible for a specific set of tasks. The pipeline progresses from initial data ingestion and automated
scanning to review, tracking, and video generation, followed by detailed analysis, Al-driven insights, and iterative

model improvement. Finally, orchestration ensures smooth integration and execution of all components.

3.1 Pipeline Stage Mapping Table

The following table maps each stage to its corresponding files or modules, highlights the key functions and classes
involved, and provides additional notes to clarify their roles within the overall system.

Stage Related Files/Modules Key Functions/Classes Notes

Data Ingestion | pages/1_Data_Ingestion.py load image(), Converts uploaded
load video(), extract metadata() videos to .mp4,

extracts metadata

Scanning pages/2_Scanning.py select_model(model architecture) Supports base/fine-

e load model() tuned models
e run_inference()

Review pages/3_Review.py load_detections(), Bulk operations
edit_classification(), add_tag(), scoped to page
validate curations(), get curation_stats(),
bulk mark tp(), bulk mark tp(),
save_curation(), save changes(),
export_curated data()

Tracking pages/4_Tracking.py track objects(), calculate iou(), Timelapse support;
match_template(), adjustable thresholds
get tracking_stats()

Video pages/5_Video_Generation.py draw_options(), generate video() MP4/AVI/MOV;

Generation quality options

Trash pages/6_Trash_Analysis.py generate analysis_report() Detection analysis,

Analysis e generate_detection_report() tracking analysis,

ocalculate metrics metadata analysis,
oanalyse confidence distribution visualisations
oanalyse tags

e generate _tracking report(),
oanalyse trackings

Al Insight pages/7_AI Insight.py get provider_info() Analysis using the
get token info() Open Al agents
short prompts()
long prompts()

Model pages/8_Model Refining.py create_curated_dataset Version-controlled

Improvement prepare ft dataset model fine-tuning
get system_info
get training_config
run_fine tuning
display_model versions
display ai analysis

Released under Creative Commons Attribution 4.0 (CC BY 4.0)

Orchestration | Flowt_pipeline.py main() Launches pipeline
workflow

3.2. Source Code Structure

FLOWT’s source code is organised into modular stages, each encapsulated in dedicated files to promote clarity,
maintainability, and extensibility. This structured approach ensures each module has a clearly defined
responsibility, enhancing reproducibility, scalability, and ease of future enhancements

e Data Ingestion stage (pages/1 Data Ingestion.py)
handles video upload, conversion to .mp4, and metadata FLowt/
extraction, providing foundational inputs for downstream flowt/
tasks. Sample input data for this stage can be downloaded from |— pages/
the CSIRO data repository. |— 1_Data_Ingestion.py

|
(https://data.csiro.au/collection/csiro:72792) |} 2_Scanning.py

| l— 3_Review.py

| |—— 4_Tracking.py

| |— 5_Video_Generation.py
|

|

|

|

|

e Scanning stage (pages/2 Inference.py)
performs object detection' using either baseline or refined

}— 6_Trash_Analysis.py
models, supporting configurable confidence thresholds.

|— 7_AI_Insight.py
l— 8_Model_Refining.py
I—— 9_Edge_Deployment.py

e Review stage (pages/3 Review.py)
L— Documentation. py

enables manual curation of detections through users, scoped

for bulk operations per page. — data/
|— Flowt pipeline.py
: l— src/
e Tracking stage (pages/4 Tracking.py) I config/

maintains temporal consistency of detected objects across
frames, leveraging two separate algorithms: IoU calculations
and template matching supported for timelapse videos.

| I— config.yaml
| |—float'ing_h’tter_classes.json

|— requirements.txt
|—— Dockerfile

r~

e Video Generation stage (pages/5 Video Generation.py) L— run.sh
generates annotated videos, accommodating multiple formats models/
models_ft/

and quality options.
. Figure2. Source Code Structure
e Analysis stages (pages/6 Analysis.py)
provides statistical analysis of detected and tracked objects.

e Al Insight stages (pages/7 Analysis AI.py)
provides Al-driven interpretations of detected classes and refined models.

e Model Improvement stage (pages/8 Model Refining.py)
facilitates dataset creation, model refining, and deployment with version control to prevent duplication.

e Edge Deployment stage (pages/9 Edge Deployment.py) - Future work
will focus on compressing and optimising the best-performing refined model for efficient execution on edge
devices such as embedded GPUs or portable Al accelerators, enabling real-time, on-site inference in field
environments.

o Orchestration layer (Flowt pipeline.py)
serves as the main entry point, seamlessly coordinating the execution of all the above stages.

! The object detection model is trained on a predefined taxonomy of litter and debris classes. A full description of the class
hierarchy and labels is provided in Appendix A to help users assess suitability for their application.

Released under Creative Commons Attribution 4.0 (CC BY 4.0)

https://data.csiro.au/collection/csiro:72792

4. Deployment and Performance Considerations

This section is intended for IT staff and engineers who wish to deploy and run the pipeline.
The pipeline has been designed to be executed without requiring any machine learning expertise, using pre-trained
models and default configurations.

4.1 Hardware Requirements
The pipeline can be run on a range of systems depending on data volume and processing speed requirements.

- Minimum requirements (CPU-based execution):
e Processor: Modern multi-core CPU
¢ RAM:>8GB
e GPU: Not required
e Suitable for:
o Small datasets
o Testing and development
o Laptop or standard desktop environments

- Recommended requirements (GPU-accelerated execution):
e GPU: NVIDIA GPU with > 8 GB VRAM
e RAM:>16GB
e Suitable for:
o Large video collections
o Faster processing times
o Desktop workstations or shared servers

- High-performance environments (optional):
e HPC or cloud instances with GPU support can be used for large-scale or batch processing
workloads.

Note: The pipeline automatically uses GPU acceleration when available; otherwise, it falls back to CPU execution
without requiring user intervention.

5. Al Insight

The Al Insight component of the FLOWT pipeline leverages OpenAl’s Large Language Models (LLMs) to convert
raw detection outputs into interpretable and actionable insights. These models analyse temporal detection patterns,
assess spatial consistency, and identify anomalies that may indicate issues such as systematic false positives,
environmental variability, or data degradation. By translating complex inference outputs into human-readable
narratives, the LLM acts as an analytical assistant that supports users in recognising subtle trends, diagnosing errors,
and making informed decisions across the workflow.

5.1 Integration with workflows

Al insight is implemented in two complementary modes depending on the workflow.

- Waste Tracking workflow Al Insight functions as a dedicated stage within the pipeline and is presented
as a separate entry as 7" stage in the main navigation menu. This design emphasises interpretability of trash
analysis (6™ stage) by integrating system-generated summaries derived from scanning, tracking, and
historical performance logs to highlight correlations that traditional statistical methods may overlook. For
instance, the system can detect recurring misclassification patterns across specific lighting conditions,
recommend parameter adjustments in the tracking configuration, or propose targeted model refinement
strategies based on observed drift in model performance. These generative insights help guide dataset
curation, model retraining priorities, and operational decision-making, contributing directly to continuous
improvement of the detection system.

Released under Creative Commons Attribution 4.0 (CC BY 4.0)

Within this stage, the LLM provides a suite of analytical capabilities, including:

e Data Summary & Insights, offering a high-level interpretation of object detections and spatio-
temporal trends.

¢ Performance Analysis, highlighting detection stability, potential false positives, and temporal
fluctuations.

¢ Class Distribution Analysis, characterising the composition of identified waste categories across the
dataset.

¢ Quality Assessment, identifying inconsistencies, degradation points, and potential issues in the
underlying imagery or annotations.

e Custom Query, enabling users to pose domain-specific questions for targeted, contextualised
explanations.

- Model Improvement workflow Al Insight is embedded directly inside the Model Refining stage. This
tighter integration aligns the LLM outputs with model selection and evaluation steps, supporting a more
iterative fine-tuning process. For each refined model, the system produces detailed, model-specific insights
such as:

e Training Performance Analysis, assessing convergence behaviour, loss dynamics, accuracy patterns,
and potential overfitting.

¢ Parameter Optimisation, where the LLM interprets training metadata to suggest adjustments to
hyperparameters, augmentation choices, or configuration settings.

e Custom Query, allowing users to explore the behaviour of individual models and request explanations
tailored to their improvement goals.

By differentiating how Al Insight is embedded in each workflow, FLOWT supports both operational decision-
making during waste tracking and strategic refinement during model development. This dual-mode design enables
the LLM to operate not only as a reporting tool but also as an active reasoning component that enhances situational
awareness throughout the system.

In a nutshell, these two separate structured integrations ensures that generative Al augments user understanding at
the appropriate stage, either by interpreting real-world detection outputs or by guiding model optimisation, thereby
enhancing transparency, accelerating review cycles, and promoting continuous improvement across the pipeline.

5.2 Limitations and Safeguards

While the LLM-driven insight module provides substantial analytical value by interpreting detection patterns,
identifying anomalies, and guiding model refinement, its use also requires careful consideration to ensure
reliability and responsible operation. As with any generative Al system, there are inherent constraints that must be
acknowledged, along with procedural measures designed to uphold the accuracy, transparency, and integrity of
the insights produced. The following sections outline the key limitations of the approach and the safeguards
implemented to mitigate potential risks.

5.2.1 Limitations

¢ Risk of Hallucination: LLMs may generate interpretations or recommendations that extend beyond the
evidence provided in the system summaries.

¢ Dependence on Input Quality: Insight accuracy is constrained by the completeness and correctness of the
detection and tracking data supplied to the model.

o Limited Statistical Validation: LLM-generated conclusions are not a substitute for quantitative evaluation
and must be cross-checked against performance metrics.

¢ Contextual Ambiguity: The model may misinterpret results when frame-level or environmental context
is insufficiently represented in the metadata.

Released under Creative Commons Attribution 4.0 (CC BY 4.0)

¢ Non-deterministic Qutputs: Generative responses may vary across sessions, requiring users to verify key
findings when consistency is critical.

5.2.2. Safeguards

e Grounded Prompting: Insights are generated only from structured detection summaries and validated
metadata to minimise unsupported reasoning.

e Human-in-the-Loop Oversight: All recommendations are subject to user review, ensuring expert
judgement remains central to operational decisions.

¢ Restricted Data Exposure: Only non-sensitive, aggregated information is sent to the LLM, adhering to
data governance and privacy requirements.

e Cross-Validation Workflow: Users are encouraged to verify Al-generated insights using statistical
metrics and system logs before acting on them.

¢ Operational Warnings: The interface displays notifications when insights require cautious interpretation,
such as during incomplete scans or early model training cycles.

6. Installation and Deployment

6.1 Prerequisites
The pipeline requires the following software and hardware components to ensure optimal performance:

e Python 3.9 or later
e Docker for containerised deployment
¢ A GPU-enabled environment for efficient fine-tuning and inference

6.2 Local Installation

The pipeline can be installed locally using the following steps:

git clone https://github.com/FNayyeri/FLOWT.git
cd FLOWT
./run.sh

6.3 Docker Deployment

For reproducible, portable deployment, the system provides full Docker support:

docker build -t flowt-pipeline .
docker run -p 8501:8501 flowt-pipeline

7. Technology Stack

FLOWT is implemented using a lightweight but robust technology stack:

Frontend: Streamlit

Backend: Python

Al Services: OpenAl APIs

Containerisation: Docker

Data Storage: Local filesystem (YAML, JSON, CSV)

Released under Creative Commons Attribution 4.0 (CC BY 4.0)

8. Future Enhancements

Planned extensions aim to broaden the system’s scalability, efficiency, and real-world applicability across both
cloud-based and edge-based environments:

e Cloud Integration: Integration with cloud-based storage platforms such as AWS S3 and Azure Data Lake
to support scalable data storage, efficient data management, and multi-user access across distributed teams
and deployments.

e Edge Deployment and Optimisation: Future development will focus on preparing the pipeline for
deployment on edge devices by compressing and optimising the best-performing refined models to run
efficiently on embedded GPUs and low-power Al accelerators. This enables real-time, on-site inference
while significantly reducing latency and reliance on server-based processing.

o Real-Time Field Operation: Edge-based inference allows the system to operate effectively in remote or
bandwidth-constrained environments, ensuring continuous functionality without dependency on high-
bandwidth network connectivity.

o Efficiency and Responsiveness: By enabling near-instantaneous inference results at the point of data
capture, edge deployment improves system responsiveness and supports time-critical environmental
monitoring tasks.

e Scalability and Practical Applicability: Preparing the pipeline for both cloud and edge execution expands
its usability across diverse operational contexts, supporting scalable, field-based automated debris detection
while preserving the high accuracy and robustness achieved through fine-tuning.

9. Licence License and Third-Party Dependencies

9.1 License for This Pipeline

The original code and documentation developed as part of this pipeline are released under the Creative Commons
Attribution 4.0 International (CC BY 4.0) license. This license permits users to share, adapt, and reuse the work,
including for commercial purposes, provided that appropriate attribution is given to the original author.

9.2 Use of YOLO and License Constraints

At its current stage, this pipeline relies on YOLO framework (Ultralytics?) for object detection. YOLO is released
under the GNU Affero General Public License (AGPL-3.0), which introduces specific obligations and
restrictions, particularly with respect to commercial use and deployment. Users intending to apply this pipeline in
commercial or production environments must ensure compliance with the YOLO license terms or obtain a
commercial license from Ultralytics.

Although YOLO is used as the default object detection framework in the present implementation, the pipeline has
been designed in a modular and extensible manner. With appropriate modifications, the YOLO-based detection
component can be replaced by alternative object detection models or frameworks that use different licensing
schemes. This flexibility allows future users to adapt the pipeline to meet specific technical, operational, or licensing
requirements, including scenarios where more permissive commercial use is desired.

2 Ultralytics. YOLO: Real-Time Object Detection Models. Ultralytics. Available at: https://github.com/ultralytics/ultralytics

Released under Creative Commons Attribution 4.0 (CC BY 4.0)

https://github.com/ultralytics/ultralytics

Appendix A: Object Class Taxonomy

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Class Name
Packaging

Other packaging

S_bubblewrap

S label

S squeeze

S straw

PS string

P _cardboard

P_foodcontainer

PH_cup

H packaging
H_ otherbottle
H plate/bowl
H_utensil

DH lid

D polystyrene

M beveragecan
M_foodcan/tin

M _aerosol
R_ball/balloon
G_beveragebottle
F_facemask

T wood/timber

Other

Material
Soft Plastic / Hard

Plastic / Cardboard /
Paper / Thin Film Bag

Aluminium / Soft

Plastic / Hard Plastic /
Cardboard / Thin Film

Bag
Soft Plastic

Soft Plastic

Soft Plastic

Soft Plastic

Soft Plastic

Cardboard

Hard Plastic / Paper

Hard Plastic
Hard Plastic
Hard Plastic
Hard Plastic
Hard Plastic
Hard Plastic

Polystyrene

Metal
Metal
Metal
Rubber
Glass
Fabric
Timber

Any

Description / Examples

Colorful packaging materials with printed designs, brand names, or
text. Examples include snack wrappers, chip bags, and printed
paper food wrappers. Often lightweight and easily carried by water
currents, they tend to float and spread widely in waterways.
Unbranded or plain packaging with a smooth or shiny surface,
often silver, white, or metallic. Examples include foil from
chocolate bars, unmarked packaging film, or industrial wrapping.
Typically lacks writing or colorful patterns.

Soft, transparent or translucent sheets with raised air pockets,
commonly used for protecting fragile goods during shipping. Pieces
may appear partially deflated and tangled in other debris.

Thin, flat plastic labels from bottles or packages. They are often
colorful, waterproof, and contain printed brand information. They
can detach easily from containers and float separately.

Soft, flexible plastic bottles designed to dispense liquids like
toothpaste, sauces, or lotions. They may be partially crushed and
have caps still attached.

Thin cylindrical drinking straws, often single-use and lightweight.
They can be whole or broken into smaller fragments, commonly
found in waterways.

Includes fishing lines, synthetic ropes, or string. Often entangled
with seaweed or other debris. Commonly used in fishing, boating,
or packaging.

Crumpled, ripped, or soaked cardboard pieces from boxes or
packaging. If colorful and branded, classify under Packaging.
When plain or worn, stays in this category.

Rigid or semi-rigid containers used for takeaway meals or pre-
packaged food. Includes lunch boxes, clamshell containers, or
paper food trays.

Hard plastic cups used for beverages, often stackable. Can be found
whole or broken into sharp fragments.

Plastic drink bottles with smooth, rounded edges. Includes water
bottles, soda bottles, and sports drink containers.

Plastic bottles that are not for beverages, such as cleaning product
containers, spray bottles, or buckets.

Large, round dishes made of hard plastic, such as picnic plates or
mixing bowls.

Plastic eating utensils like forks, spoons, and knives. Typically,
lightweight and found near food packaging debris.

Small, round plastic lids from bottles, jars, or containers. These are
among the most common littered items due to their small size.
Lightweight foam material used in food packaging, cups, and
protective packaging. Breaks easily into small fragments that float
extensively.

Aluminium cans used for drinks such as soda or beer. Can be intact
or crushed.

Metal tins or cans used for food storage, like soup cans or tuna tins.
May show signs of rusting when exposed to water.

Pressurized spray cans used for deodorants, insecticides, or
cleaning sprays. Usually cylindrical with a plastic cap.

Deflated or torn balloons, rubber balls, or similar rubber-based
recreational items. May still have strings or ribbons attached.
Glass bottles used for beverages like beer or soda. Can be whole or
broken into sharp fragments.

Disposable or reusable face masks made from fabric or mixed
materials. Commonly found since the COVID-19 pandemic.
Wooden fragments such as sticks, construction offcuts, or
driftwood that originate from man-made sources.

Any man-made object not specifically listed above. Examples
include toys, electronics, or unusual items like shoes or clothing.

Released under Creative Commons Attribution 4.0 (CC BY 4.0)

Appendix B: Glossary of Terms

Term Description

1 Bounding Box A rectangle drawn around an object in an image to indicate its location.

2 | GPU (Graphics A processor designed to handle complex calculations quickly, often used for training Al
Processing Unit) models and processing images or videos.

3 HPC (High-Performance @ Powerful computer systems used to run very large or complex calculations quickly.
Computing)

4 | IoU (Intersection over Shows how much a predicted box matches the actual object, from 0 (no match) to 1
Union) (perfect match).

5 | LLM (Large Language An Al model trained on vast amounts of text to understand and generate human-like
Model) language.

6 | Precision The fraction of correctly identified objects out of all objects the model predicted.

7 | Recall The fraction of correctly identified objects out of all actual objects in the image.

8 VRAM (Video RAM) Memory on a GPU that stores data for processing images, videos, or Al computations.

9 YAML A human-readable file format often used to store configuration settings for programs.

10 YOLO A popular object detection model that predicts objects in images in real-time.

Released under Creative Commons Attribution 4.0 (CC BY 4.0)

