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Abstract 

Plastic and floating debris pose significant risks to aquatic ecosystems, marine life, and human health. Recent 
advances in AI and computer vision enable efficient detection, monitoring, and quantification of floating waste, 
generating reliable data to support clean-up efforts, policymaking, and long-term prevention. This work presents 
FLOWT, a modular computer vision pipeline for Floating Litter Observation & Waste Tracking. FLOWT supports 
video ingestion, object detection, visualization, and tracking of individual debris items across frames. A human-in-
the-loop review stage ensures validated, high-quality data by allowing users to correct misclassifications before 
downstream use. FLOWT operates via two independent workflows: the Waste Tracking workflow, which focuses 
on operational monitoring and produces annotated outputs and analytical summaries without requiring machine 
learning expertise; and the Model Improvement workflow, which leverages validated annotations to continuously 
retrain and fine-tune detection models while maintaining ongoing waste-tracking operations. Additionally, FLOWT 
integrates AI Insight, using Large Language Models (LLMs) to transform detection outputs into actionable 
analyses. AI Insight interprets spatial and temporal patterns, flags anomalies, highlights recurring errors, and guides 
both operational decisions and model refinement. By combining these workflows and AI-driven insights, FLOWT 
accelerates review cycles, enhances transparency, and enables smarter monitoring and continuous improvement of 
floating debris detection. 

1. Pipeline Objectives  

FLOWT is built around two independent workflows that support both operational monitoring and continuous model 
development. These two independent workflows, illustrated in Figure 1, include waste tracking and model fine-
tuning. The Waste Tracking workflow is designed for environmental practitioners and researchers who need to 
detect debris, review and correct outputs, generate annotated videos, and produce analytical summaries—without 
requiring any machine learning expertise. The Model Improvement workflow leverages the validated annotations 
produced during review to retrain or fine-tune detection models. Because the workflows operate independently, 
waste-tracking activities continue uninterrupted even as models are improved in parallel. 

 
Figure1. FLOWT Pipeline including two independent workflows 

FLOWT is built for scalability, maintainability, and, above all, accessibility to non-ML technical users. With a 
consistent and intuitive UI/UX, automated configuration handling, and guided workflows, it enables users with 
limited technical backgrounds to inspect detections, validate outputs, fine-tune models, and conduct analyses with 
confidence. By combining automated AI capabilities with essential human oversight, FLOWT offers a practical 
and reliable solution for environmental monitoring and marine debris management. 



Released under Creative Commons Attribution 4.0 (CC BY 4.0) 

2.1 Waste Tracking Workflow  

The waste tracking workflow manages the full process of floating litter observation, from data ingestion and 
automated scanning to human-in-the-loop review, object tracking, analysis, and annotated video generation. During 
tracking, FLOWT adapts to different video types: in standard videos with smooth frame-to-frame motion, IoU-
based tracking is used to reliably associate objects across frames; however, in timelapse footage, where large 
temporal gaps cause objects to shift significantly between frames and result in zero-intersection IoU values, the 
system switches to template matching, enabling robust re-identification of debris items despite abrupt positional 
changes. This workflow empowers users to manually correct detection results, track unique objects, and generate 
detailed analytical outputs.  

• Goal: Monitor and analyse floating litter. 
• Process: 

Data Ingestion → Scanning → Review → Tracking → Analysis → Video Generation 
• Key Features: 

o Manual review and correction of detection results. 
o Tracking of unique litter objects using IoU and template matching. 
o In-depth analysis and annotated video generation. 

2.2 Model Improvement Workflow 

Complementing this, the model improvement workflow focuses on enhancing detection performance by 
transforming validated annotations into high-quality, curated training datasets. As the fine-tuning dataset grows 
over time - sourced from individual frames extracted during user-reviewed video processing - FLOWT ensures that 
no redundant images are added when videos are reprocessed or revalidated. To maintain a clean and efficient 
training set, the system uses a hash-based deduplication mechanism, comparing the hash signatures of new 
frames against previously stored samples. This prevents duplicate images from entering the dataset and preserves 
the integrity and diversity of the curated training data used for model refinement. This workflow also supports 
version-controlled fine-tuning and ensures that refined models can be seamlessly reintegrated into the inference 
pipeline without interrupting ongoing waste-tracking tasks. Together, these workflows deliver a flexible, reliable, 
and user-friendly system for environmental monitoring and model evolution.  

• Goal: Iteratively improve detection model performance. 
• Process: 

Data Ingestion → Scanning → Review → Model Refinement 
• Key Features: 

o Creation of high-quality, curated training datasets. 
o Version-controlled fine-tuning of models. 
o Seamless integration of improved models into the inference workflow. 

A dedicated analysis module provides two complementary capabilities: detection-based analytics, offering 
performance summaries through metrics such as accuracy, precision, recall, class distributions, confidence scores, 
and tag frequency patterns to identify potential bias or drift. AI-driven insights, powered by OpenAI Large 
Language Models (LLMs), which interpret detection trends, highlight anomalies, and produce human-readable 
recommendations for improving data quality and operational workflows. These generative AI insights act as an 
analytical assistant, helping users recognise non-obvious patterns and make informed decisions. 

3. Pipeline Architecture Overview 

FLOWT’s pipeline is built on a modular technical architecture designed to deliver a seamless and intuitive user 
experience across all workflow stages. The Navigation System ensures smooth movement between components by 
maintaining state persistence—for example, preserving selected videos, chosen models, and user inputs across 
pages—while a unified video display standardises all uploaded formats into .mp4. Complementing this, FLOWT’s 
centralised configuration management uses a YAML-based system to automatically store and restore user 
preferences, with clearly structured sections dedicated to video generation, tracking, and fine-tuning. Building on 
these foundations, the pipeline stages work together to handle ingestion, automated scanning, human-in-the-loop 
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review, tracking, analysis, model improvement, and system orchestration. The following table maps each pipeline 
stage to its associated modules, key functions, and operational notes. 

Navigation System Features: 

• State Persistence: Maintains video and model selections across pages. 
• Consistent UI: Uniform .mp4 video display, regardless of original format. 
• Intuitive Navigation: Previous/Next buttons across all pages. 

Configuration Management Features: 

• Centralised YAML-based configuration (config/config.yaml). 
• User preferences are automatically saved and restored. 
• Modular sections for video generation, tracking, and fine-tuning. 

To provide a clear understanding of the pipeline’s structure and functionality, we organise the workflow into distinct 
stages, each responsible for a specific set of tasks. The pipeline progresses from initial data ingestion and automated 
scanning to review, tracking, and video generation, followed by detailed analysis, AI-driven insights, and iterative 
model improvement. Finally, orchestration ensures smooth integration and execution of all components.  

3.1 Pipeline Stage Mapping Table 

The following table maps each stage to its corresponding files or modules, highlights the key functions and classes 
involved, and provides additional notes to clarify their roles within the overall system. 

Stage Related Files/Modules Key Functions/Classes  Notes 
Data Ingestion pages/1_Data_Ingestion.py load_image(),  

load_video(), extract_metadata() 
Converts uploaded 
videos to .mp4, 
extracts metadata 

Scanning pages/2_Scanning.py select_model(model_architecture) 
• load_model() 
• run_inference()  

Supports base/fine-
tuned models 

Review pages/3_Review.py load_detections(),  
edit_classification(), add_tag(), 
validate_curations(), get_curation_stats(),  
bulk_mark_tp(), bulk_mark_tp(), 
save_curation(), save_changes(),  
export_curated_data() 

Bulk operations 
scoped to page 

Tracking pages/4_Tracking.py track_objects(), calculate_iou(), 
match_template(),  
get_tracking_stats() 

Timelapse support; 
adjustable thresholds 

Video 
Generation 

pages/5_Video_Generation.py draw_options(), generate_video() MP4/AVI/MOV; 
quality options 

Trash 
Analysis 

pages/6_Trash_Analysis.py  generate_analysis_report() 
• generate_detection_report() 

o calculate_metrics 
o analyse_confidence_distribution 
o analyse_tags 

• generate_tracking_report(),  
o analyse_trackings 

Detection analysis, 
tracking analysis, 
metadata analysis, 
visualisations  

AI Insight pages/7_AI_Insight.py get_provider_info() 
get_token_info() 
short_prompts() 
long_prompts() 

Analysis using the 
Open AI agents 

Model 
Improvement 

pages/8_Model_Refining.py create_curated_dataset 
prepare_ft_dataset 
get_system_info 
get_training_config 
run_fine_tuning 
display_model_versions 
display_ai_analysis 

Version-controlled 
model fine-tuning 
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Orchestration Flowt_pipeline.py main() Launches pipeline 
workflow 

3.2. Source Code Structure  

FLOWT’s source code is organised into modular stages, each encapsulated in dedicated files to promote clarity, 
maintainability, and extensibility. This structured approach ensures each module has a clearly defined 
responsibility, enhancing reproducibility, scalability, and ease of future enhancements 

• Data Ingestion stage (pages/1_Data_Ingestion.py)  
handles video upload, conversion to .mp4, and metadata 
extraction, providing foundational inputs for downstream 
tasks. Sample input data for this stage can be downloaded from 
the CSIRO data repository. 
(https://data.csiro.au/collection/csiro:72792) 

• Scanning stage (pages/2_Inference.py)  
performs object detection1 using either baseline or refined 
models, supporting configurable confidence thresholds.  

• Review stage (pages/3_Review.py)  
enables manual curation of detections through users, scoped 
for bulk operations per page.  

• Tracking stage (pages/4_Tracking.py)  
maintains temporal consistency of detected objects across 
frames, leveraging two separate algorithms: IoU calculations 
and template matching supported for timelapse videos.  

• Video Generation stage (pages/5_Video_Generation.py)  
generates annotated videos, accommodating multiple formats 
and quality options.  

• Analysis stages (pages/6_Analysis.py) 
provides statistical analysis of detected and tracked objects. 

• AI Insight stages (pages/7_Analysis_AI.py)  
provides AI-driven interpretations of detected classes and refined models.  

• Model Improvement stage (pages/8_Model_Refining.py)  
facilitates dataset creation, model refining, and deployment with version control to prevent duplication. 

• Edge Deployment stage (pages/9_Edge_Deployment.py) - Future work 
will focus on compressing and optimising the best-performing refined model for efficient execution on edge 
devices such as embedded GPUs or portable AI accelerators, enabling real-time, on-site inference in field 
environments. 

• Orchestration layer (Flowt_pipeline.py)  
serves as the main entry point, seamlessly coordinating the execution of all the above stages.  
 
 
 

 
1 The object detection model is trained on a predefined taxonomy of litter and debris classes. A full description of the class 
hierarchy and labels is provided in Appendix A to help users assess suitability for their application. 

Figure2. Source Code Structure 

https://data.csiro.au/collection/csiro:72792


Released under Creative Commons Attribution 4.0 (CC BY 4.0) 

4. Deployment and Performance Considerations 

This section is intended for IT staff and engineers who wish to deploy and run the pipeline. 
The pipeline has been designed to be executed without requiring any machine learning expertise, using pre-trained 
models and default configurations. 

4.1 Hardware Requirements 

The pipeline can be run on a range of systems depending on data volume and processing speed requirements. 

- Minimum requirements (CPU-based execution): 
• Processor: Modern multi-core CPU 
• RAM: ≥ 8 GB 
• GPU: Not required 
• Suitable for: 

o Small datasets 
o Testing and development 
o Laptop or standard desktop environments 

- Recommended requirements (GPU-accelerated execution): 
• GPU: NVIDIA GPU with ≥ 8 GB VRAM 
• RAM: ≥ 16 GB 
• Suitable for: 

o Large video collections 
o Faster processing times 
o Desktop workstations or shared servers 

- High-performance environments (optional): 
• HPC or cloud instances with GPU support can be used for large-scale or batch processing 

workloads. 

Note: The pipeline automatically uses GPU acceleration when available; otherwise, it falls back to CPU execution 
without requiring user intervention. 

5. AI Insight  

The AI Insight component of the FLOWT pipeline leverages OpenAI’s Large Language Models (LLMs) to convert 
raw detection outputs into interpretable and actionable insights. These models analyse temporal detection patterns, 
assess spatial consistency, and identify anomalies that may indicate issues such as systematic false positives, 
environmental variability, or data degradation. By translating complex inference outputs into human-readable 
narratives, the LLM acts as an analytical assistant that supports users in recognising subtle trends, diagnosing errors, 
and making informed decisions across the workflow.  

5.1 Integration with workflows 

AI insight is implemented in two complementary modes depending on the workflow. 

- Waste Tracking workflow AI Insight functions as a dedicated stage within the pipeline and is presented 
as a separate entry as 7th stage in the main navigation menu. This design emphasises interpretability of trash 
analysis (6th stage) by integrating system-generated summaries derived from scanning, tracking, and 
historical performance logs to highlight correlations that traditional statistical methods may overlook. For 
instance, the system can detect recurring misclassification patterns across specific lighting conditions, 
recommend parameter adjustments in the tracking configuration, or propose targeted model refinement 
strategies based on observed drift in model performance. These generative insights help guide dataset 
curation, model retraining priorities, and operational decision-making, contributing directly to continuous 
improvement of the detection system. 
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Within this stage, the LLM provides a suite of analytical capabilities, including: 

• Data Summary & Insights, offering a high-level interpretation of object detections and spatio-
temporal trends. 

• Performance Analysis, highlighting detection stability, potential false positives, and temporal 
fluctuations. 

• Class Distribution Analysis, characterising the composition of identified waste categories across the 
dataset. 

• Quality Assessment, identifying inconsistencies, degradation points, and potential issues in the 
underlying imagery or annotations. 

• Custom Query, enabling users to pose domain-specific questions for targeted, contextualised 
explanations. 

- Model Improvement workflow AI Insight is embedded directly inside the Model Refining stage. This 
tighter integration aligns the LLM outputs with model selection and evaluation steps, supporting a more 
iterative fine-tuning process. For each refined model, the system produces detailed, model-specific insights 
such as: 

• Training Performance Analysis, assessing convergence behaviour, loss dynamics, accuracy patterns, 
and potential overfitting. 

• Parameter Optimisation, where the LLM interprets training metadata to suggest adjustments to 
hyperparameters, augmentation choices, or configuration settings. 

• Custom Query, allowing users to explore the behaviour of individual models and request explanations 
tailored to their improvement goals. 

By differentiating how AI Insight is embedded in each workflow, FLOWT supports both operational decision-
making during waste tracking and strategic refinement during model development. This dual-mode design enables 
the LLM to operate not only as a reporting tool but also as an active reasoning component that enhances situational 
awareness throughout the system.  

In a nutshell, these two separate structured integrations ensures that generative AI augments user understanding at 
the appropriate stage, either by interpreting real-world detection outputs or by guiding model optimisation, thereby 
enhancing transparency, accelerating review cycles, and promoting continuous improvement across the pipeline. 

5.2 Limitations and Safeguards 

While the LLM-driven insight module provides substantial analytical value by interpreting detection patterns, 
identifying anomalies, and guiding model refinement, its use also requires careful consideration to ensure 
reliability and responsible operation. As with any generative AI system, there are inherent constraints that must be 
acknowledged, along with procedural measures designed to uphold the accuracy, transparency, and integrity of 
the insights produced. The following sections outline the key limitations of the approach and the safeguards 
implemented to mitigate potential risks. 

5.2.1 Limitations 

• Risk of Hallucination: LLMs may generate interpretations or recommendations that extend beyond the 
evidence provided in the system summaries. 

• Dependence on Input Quality: Insight accuracy is constrained by the completeness and correctness of the 
detection and tracking data supplied to the model. 

• Limited Statistical Validation: LLM-generated conclusions are not a substitute for quantitative evaluation 
and must be cross-checked against performance metrics. 

• Contextual Ambiguity: The model may misinterpret results when frame-level or environmental context 
is insufficiently represented in the metadata. 
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• Non-deterministic Outputs: Generative responses may vary across sessions, requiring users to verify key 
findings when consistency is critical. 

5.2.2. Safeguards 

• Grounded Prompting: Insights are generated only from structured detection summaries and validated 
metadata to minimise unsupported reasoning. 

• Human-in-the-Loop Oversight: All recommendations are subject to user review, ensuring expert 
judgement remains central to operational decisions. 

• Restricted Data Exposure: Only non-sensitive, aggregated information is sent to the LLM, adhering to 
data governance and privacy requirements. 

• Cross-Validation Workflow: Users are encouraged to verify AI-generated insights using statistical 
metrics and system logs before acting on them. 

• Operational Warnings: The interface displays notifications when insights require cautious interpretation, 
such as during incomplete scans or early model training cycles. 

6. Installation and Deployment 

6.1 Prerequisites 

The pipeline requires the following software and hardware components to ensure optimal performance: 

• Python 3.9 or later 
• Docker for containerised deployment 
• A GPU-enabled environment for efficient fine-tuning and inference 

6.2 Local Installation 

The pipeline can be installed locally using the following steps: 

git clone https://github.com/FNayyeri/FLOWT.git 
cd FLOWT 
./run.sh 

6.3 Docker Deployment 

For reproducible, portable deployment, the system provides full Docker support: 

docker build -t flowt-pipeline . 
docker run -p 8501:8501 flowt-pipeline 

 

7. Technology Stack 

FLOWT is implemented using a lightweight but robust technology stack: 

• Frontend: Streamlit 
• Backend: Python 
• AI Services: OpenAI APIs 
• Containerisation: Docker 
• Data Storage: Local filesystem (YAML, JSON, CSV) 
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8. Future Enhancements 

Planned extensions aim to broaden the system’s scalability, efficiency, and real-world applicability across both 
cloud-based and edge-based environments: 

• Cloud Integration: Integration with cloud-based storage platforms such as AWS S3 and Azure Data Lake 
to support scalable data storage, efficient data management, and multi-user access across distributed teams 
and deployments. 

• Edge Deployment and Optimisation: Future development will focus on preparing the pipeline for 
deployment on edge devices by compressing and optimising the best-performing refined models to run 
efficiently on embedded GPUs and low-power AI accelerators. This enables real-time, on-site inference 
while significantly reducing latency and reliance on server-based processing. 

• Real-Time Field Operation: Edge-based inference allows the system to operate effectively in remote or 
bandwidth-constrained environments, ensuring continuous functionality without dependency on high-
bandwidth network connectivity. 

• Efficiency and Responsiveness: By enabling near-instantaneous inference results at the point of data 
capture, edge deployment improves system responsiveness and supports time-critical environmental 
monitoring tasks. 

• Scalability and Practical Applicability: Preparing the pipeline for both cloud and edge execution expands 
its usability across diverse operational contexts, supporting scalable, field-based automated debris detection 
while preserving the high accuracy and robustness achieved through fine-tuning. 

9. Licence License and Third-Party Dependencies 

9.1 License for This Pipeline 

The original code and documentation developed as part of this pipeline are released under the Creative Commons 
Attribution 4.0 International (CC BY 4.0) license. This license permits users to share, adapt, and reuse the work, 
including for commercial purposes, provided that appropriate attribution is given to the original author. 

9.2 Use of YOLO and License Constraints 

At its current stage, this pipeline relies on YOLO framework (Ultralytics2) for object detection. YOLO is released 
under the GNU Affero General Public License (AGPL-3.0), which introduces specific obligations and 
restrictions, particularly with respect to commercial use and deployment. Users intending to apply this pipeline in 
commercial or production environments must ensure compliance with the YOLO license terms or obtain a 
commercial license from Ultralytics. 

Although YOLO is used as the default object detection framework in the present implementation, the pipeline has 
been designed in a modular and extensible manner. With appropriate modifications, the YOLO-based detection 
component can be replaced by alternative object detection models or frameworks that use different licensing 
schemes. This flexibility allows future users to adapt the pipeline to meet specific technical, operational, or licensing 
requirements, including scenarios where more permissive commercial use is desired. 

  

 
2 Ultralytics. YOLO: Real-Time Object Detection Models. Ultralytics. Available at: https://github.com/ultralytics/ultralytics 

https://github.com/ultralytics/ultralytics
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Appendix A: Object Class Taxonomy 

 Class Name Material Description / Examples  
1 Packaging Soft Plastic / Hard 

Plastic / Cardboard / 
Paper / Thin Film Bag 

Colorful packaging materials with printed designs, brand names, or 
text. Examples include snack wrappers, chip bags, and printed 
paper food wrappers. Often lightweight and easily carried by water 
currents, they tend to float and spread widely in waterways. 

2 Other_packaging Aluminium / Soft 
Plastic / Hard Plastic / 
Cardboard / Thin Film 
Bag 

Unbranded or plain packaging with a smooth or shiny surface, 
often silver, white, or metallic. Examples include foil from 
chocolate bars, unmarked packaging film, or industrial wrapping. 
Typically lacks writing or colorful patterns. 

3 S_bubblewrap Soft Plastic Soft, transparent or translucent sheets with raised air pockets, 
commonly used for protecting fragile goods during shipping. Pieces 
may appear partially deflated and tangled in other debris. 

4 S_label Soft Plastic Thin, flat plastic labels from bottles or packages. They are often 
colorful, waterproof, and contain printed brand information. They 
can detach easily from containers and float separately. 

5 S_squeeze Soft Plastic Soft, flexible plastic bottles designed to dispense liquids like 
toothpaste, sauces, or lotions. They may be partially crushed and 
have caps still attached. 

6 S_straw Soft Plastic Thin cylindrical drinking straws, often single-use and lightweight. 
They can be whole or broken into smaller fragments, commonly 
found in waterways. 

7 PS_string Soft Plastic Includes fishing lines, synthetic ropes, or string. Often entangled 
with seaweed or other debris. Commonly used in fishing, boating, 
or packaging. 

8 P_cardboard Cardboard Crumpled, ripped, or soaked cardboard pieces from boxes or 
packaging. If colorful and branded, classify under Packaging. 
When plain or worn, stays in this category. 

9 P_foodcontainer Hard Plastic / Paper Rigid or semi-rigid containers used for takeaway meals or pre-
packaged food. Includes lunch boxes, clamshell containers, or 
paper food trays. 

10 PH_cup Hard Plastic Hard plastic cups used for beverages, often stackable. Can be found 
whole or broken into sharp fragments. 

11 H_packaging Hard Plastic Plastic drink bottles with smooth, rounded edges. Includes water 
bottles, soda bottles, and sports drink containers. 

12 H_otherbottle Hard Plastic Plastic bottles that are not for beverages, such as cleaning product 
containers, spray bottles, or buckets. 

13 H_plate/bowl Hard Plastic Large, round dishes made of hard plastic, such as picnic plates or 
mixing bowls. 

14 H_utensil Hard Plastic Plastic eating utensils like forks, spoons, and knives. Typically, 
lightweight and found near food packaging debris. 

15 DH_lid Hard Plastic Small, round plastic lids from bottles, jars, or containers. These are 
among the most common littered items due to their small size. 

16 D_polystyrene Polystyrene Lightweight foam material used in food packaging, cups, and 
protective packaging. Breaks easily into small fragments that float 
extensively. 

17 M_beveragecan Metal Aluminium cans used for drinks such as soda or beer. Can be intact 
or crushed. 

18 M_foodcan/tin Metal Metal tins or cans used for food storage, like soup cans or tuna tins. 
May show signs of rusting when exposed to water. 

19 M_aerosol Metal Pressurized spray cans used for deodorants, insecticides, or 
cleaning sprays. Usually cylindrical with a plastic cap. 

20 R_ball/balloon Rubber Deflated or torn balloons, rubber balls, or similar rubber-based 
recreational items. May still have strings or ribbons attached. 

21 G_beveragebottle Glass Glass bottles used for beverages like beer or soda. Can be whole or 
broken into sharp fragments. 

22 F_facemask Fabric Disposable or reusable face masks made from fabric or mixed 
materials. Commonly found since the COVID-19 pandemic. 

23 T_wood/timber Timber Wooden fragments such as sticks, construction offcuts, or 
driftwood that originate from man-made sources. 

24 Other Any Any man-made object not specifically listed above. Examples 
include toys, electronics, or unusual items like shoes or clothing. 
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Appendix B: Glossary of Terms 
  

 Term Description  
1 Bounding Box A rectangle drawn around an object in an image to indicate its location. 
2 GPU (Graphics 

Processing Unit) 
A processor designed to handle complex calculations quickly, often used for training AI 
models and processing images or videos. 

3 HPC (High-Performance 
Computing) 

Powerful computer systems used to run very large or complex calculations quickly. 

4 IoU (Intersection over 
Union) 

Shows how much a predicted box matches the actual object, from 0 (no match) to 1 
(perfect match). 

5 LLM (Large Language 
Model) 

An AI model trained on vast amounts of text to understand and generate human-like 
language. 

6 Precision The fraction of correctly identified objects out of all objects the model predicted. 
7 Recall  The fraction of correctly identified objects out of all actual objects in the image. 
8 VRAM (Video RAM) Memory on a GPU that stores data for processing images, videos, or AI computations. 
9 YAML A human-readable file format often used to store configuration settings for programs. 
10 YOLO A popular object detection model that predicts objects in images in real-time. 

 


